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Abstract

Mandelbrot's fractal geometry has provided a new qualitative
and quantitative approach for the understanding of the complex
shapes of nature. In this paper, the fractal dimension of music
waveform graphs is computed using the box-counting algorithm. It is
shown that for the time scales studied, the fractal dimension of music
is ~ 1.65, with very little variation for a wide range of styles of music.

1. Introduction

Fractals are geometric shapes with interesting properties that
set them apart from normal Euclidean shapes. The first interesting
property is that of self-similarity. This means that the geometric object
is similar in both a qualitative and quantitative sense over many
different scales. For example, if you zoom in on the edge of a circle, in
the limit it would appear to beine. However, as we will see, if you
zoom in on a fractal such as (ﬁe Mandelbrot set, It continues to be
complex after literally millions of zooms. Another property of fractals is
a non-integer dimension, which is related to the concept of self-
similarity. The calculation of a fractal dimensions)is an important way
to classify objects that exhibit fractal characterisfics.

In this paper, | use the box-counting algorithm to compute the
fractal dimensions of music waveform graphs. The waveforms are
plotted as normalized time-series data, and thus have a fractal
dimension between 1 (a line) and 2 (a solid). The time scale used is 2
seconds. A wide variety of musical styles was analyzed, and the
results are tabulated and discussed. A discussion then follows of the
possible applications of the fractal dimension of music.



2. Background (what are fractals?)

Fractals are geometric shapes that have non-integer dimension
and exhibit self-similarity [5]. A common way of generating fractals is
to iterate non-linear difference equations. It is the non-linear aspect of
this iteration that gives rise to the complex shapes of fractals.

One of the simplest difference equations that when iterated
gives fractal behavior is the logistic growth equation. This equation
arises from the differential form of a simple exponential growth
equation with an added term to prevent unconstrained growth:

Xn+1 » an(1 i Xn)

This equation is iterated for U between 0 and 4. Xg is given a starting
value of 0.5, and the equation is iterated 150 times. The final 50
values of X{ i then plotted against U [Fig. 1]. We can see from the
plot that until U=3 the function is stable, but then after U=3 the plot
exhibits bifurcation's’ until finally it is goes into periods of deterministic
chaos. This plot also shows-self-similarity. A plot of the equation
around one of its bifurcation's shows a qualitative similarity to the
larger plot.

A now classic example of a fractal is the Mandelbrot set [1],[fig.
2]. This fractal is produced by iterating the non-linear difference
equation:

Zpir= Zr2,+C b~

where Z is a complex number and C isgcomplex parameter. Zg is set
equal to 0.0, and the equation is iterated. If the point is bounded, a
point is plotted; if not, the point is left blank. It is traditionally plotted
for C between -2 and 2. This simple equation gives rise to a very
beautiful and complex fractal, and its self-similarity can be seen by
zooming in on a piece of the "coastline" [fig. 3].



3. Fractal Dimension

Imagine trying to measure the coast of England. If you used a map
and a ruler, you would get one estimate. If you went to England and
walked around the whole island counting your steps, you would get a
much greater estimate because you could walk around every bay and
inlet. This brings up the concept of fractal dimension. For fractal
objects that exhibit self-similarity, one gets a different estimate of
"length" depending on the scale of the ruler one is using. A convenient
way to look at dimension is to use the Equation:

Here N(e) stands for the number of measuring sticks used to measure
a certain object, e is the length of the measuring stick and D is the
dimension of the object. (note that | am using e as epsilon, not
e=2.7...). This equation shows that if we were to measure a certain
object with a number of different size measuring sticks, and count the
number needed, We could solve for the fractal dimension, D. This
leads to the box-counting algorithm for the determination of fractal
dimension [2].

4. The Box-Counting Algorithm

If we take the log of both sides of equation (1), we get:

2 Log(N(¢))=-DxLog(s)

If we plot the log(N(e)) verses log(e), the slope of the line is the
negative dimension of the object. This is the basis of the box-counting
algorithm [2]. Recorded music is time-series data, and can be plotted
as such [fig 3]. To use different size "measuring sticks" we overlay a
grid of various size spacing on the data and count the number of grid-
boxes that are touched by the data. The data is normalized so it is has
the same horizontal and vertical scale [fig 3,4].
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Then log(N(e)) is plotted verses log(e), and the negative slope of the
line is the fractal dimension of the waveform. A straight line has a
dimension of 1, and a solid has a dimension of 2, so the music
waveform graph will have a dimension between 1 and 2. For example
in [fig. 5], the counts of various different grid sizes e are shown, and
the line of log(N(e)) Vs, log(e) is shown giving a dimension of ~1.65.
Least-squares regression is used to find the slope of the line.

y

5. Experimental Setup

Data acquisition and analysis was done on an IBM-PC
compatible personal computer with additional hardware for music
sampling. The music was sampled off a Compact Disc player at
11,025 samples per second. The analysis was done on 20,000 data
points, which is approximately 2 seconds of music. The analog-to-
digital board was 8-bit, which gives a dynamic range of about 48 dB.
8-bit conversion means that the analog waveform is broken into 256
discrete levels, which were then normalized [fig 4].

Analysis of the data was performed using algorithms written in
the matrix language Matlab. C was used where extra speed was
required, such as in the computation intensive box-counting algorithm.



6. Data and analysis

Fractal dimension calculations on a wide variety of styles of
music show that the fractal dimension D is roughly invariant, for this
sampling rate and resolution.

Results
Music Sample Dimension
Random Noise 1.95
1 kHz Measured Sin Wave 1.82
1 Khz Generated Sin Wave 1.81
Grateful Dead 1.64
Vivaldi 1.65
Elliot Sharp 1.60
English Beat : 1.65
Sri Lankan 1.68
Gin & Tonic (Jazz) 1.69
Chariots of Fire 1.68
Line 1.01

The fractal dimension of the music samples is centered at
D=1.65 and varies between a high of 1.69 and a low if 1.60. For
comparison and testing, the box-counting algorithm was also used on
some synthetic data sets. The 20,000 point line [fig 6] gives the
expected value of 1 to within experimental accuracy. Music is
obviously not just random noise, and this is supported by the data, as
a random noise sample had a much higher fractal dimension than the
music samples. A 1kHz sine wave also had a higher fractal
dimension fig[7].

For comparison, the power spectral density was also computed
and is show in [fig 7]. The power spectral densities look similar for the
music samples and the random noise, while the fractal dimension
estimates are much different.

Embedded in the concept of fractal dimension is self-similarity.
Self-similarly in music could come from the highly complex rhythms



and melodies that exist over different time scales. This could explain
the correlation of the fractal dimension for many different styles of
music.

7. Applications

There are many areas of signal processing that could benefit
from the inclusion of fractal dimension in their implementations.

For example, a common way to synthesize music on computers
is FM modulation, which works by modulating sine waves of various
frequencies with other sine waves. However, this method produces
music that sounds unnatural. Fractal generating functions that
produce sound with a dimension ~ 1.6 could be added to the FM
modulation to enhance the realism of the sound.

High fidelity music in the digital domain takes up a lot of storage
space. For example, 1 hour of 16-bit digital music takes up 640Mb of
hard disk space. Many techniques exist to compress data, but one
based on Linear Fractal Interpolation shows great promise [3]. Most
algorithms in common use can compress data about 4:1, while with
Linear Fractal Interpolation, Mazel was able to get a 16:1 compression
ratio on certain waveforms. The great obstacle in this method is the
tremendous computational burden required to compute the fractal
parameters. If it can be shown that the dimension of music is invariant
under much greater time scales than researched here, the
computational burden would be greatly reduced.

The fractal dimension of music waveforms can also be used to
set the parameters for non-linear digital filtering. Harris [4] concludes
that the "technique of using the fractal dimension of input data to
adapt a filter's characteristics is a viable one".



8. Conclusion

The fractal dimension of music on the time scale of 2 seconds is
equal to ~1.65 and is invariant for a wide range of musical styles. This
is interesting in and of itself, and it shows the need for more research
to see if this invariance holds for a wider range of time scales. The
potential applications of the fractal characterization are numerous.
This fractal dimension characterization will hopefully be used as a
supplement to more traditional means of signal analysis in order to
gain more understanding of the fundamental properties of music.
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From Vivaldi’s Four Seasons, ~ 2 sec.
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Log(N(e))

Fractal Dimension of ~ 2 sec of Four Seasons
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1 kHz Measured sine wave from test CD
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1kHz Generated Sine Wave
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Log(N(e))

20,000 Points of Random Noise
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From Grateful Dead
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Sri Lankan Sample and Vivaldi Sample
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